

EPAct Program Update for DOE

Status and Budget

March 4, 2009

----*-*

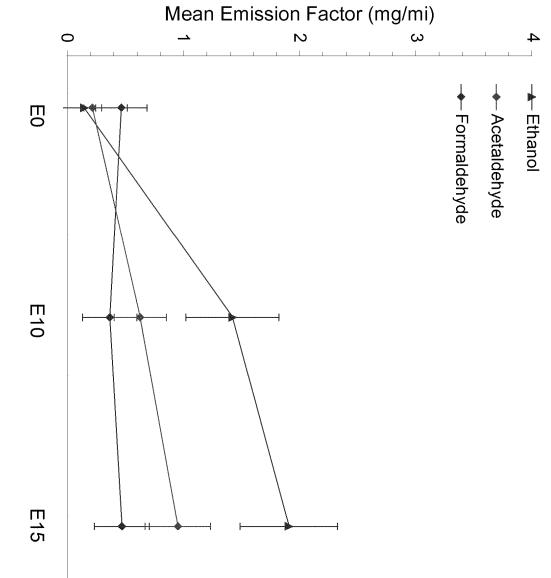
Status of Testing and Fuel Blending

545OneDrive2_00019428

- Phase 1 testing complete
- 75°F testing of 19 vehicles on 3 fuels (E0, E10, E15)
- Interim FTP-cycle testing complete
- 75°F testing of 6 vehicles on 3 fuels (E0, E10, E15)
- Phase 2 testing complete
- 50°F testing of 19 vehicles on 3 fuels (E0, E10, E15)
- scope due to uncertain tunding Currently preparing to launch Phase 3 (main fuel matrix) with reduced
- 75°F testing of 10? (originally19) vehicles on 26 fuels (E0, E10, E15, E20)
- Test fuel development being done by Haltermann and ASD
- EPA defines fuel recipes
- Haltermann prepares hand blends, bulk blends and performs fuel analyses
- 22 of the 26 fuels needed in Phase 3 have been blended in bulk
- 13 have been delivered to SWRI

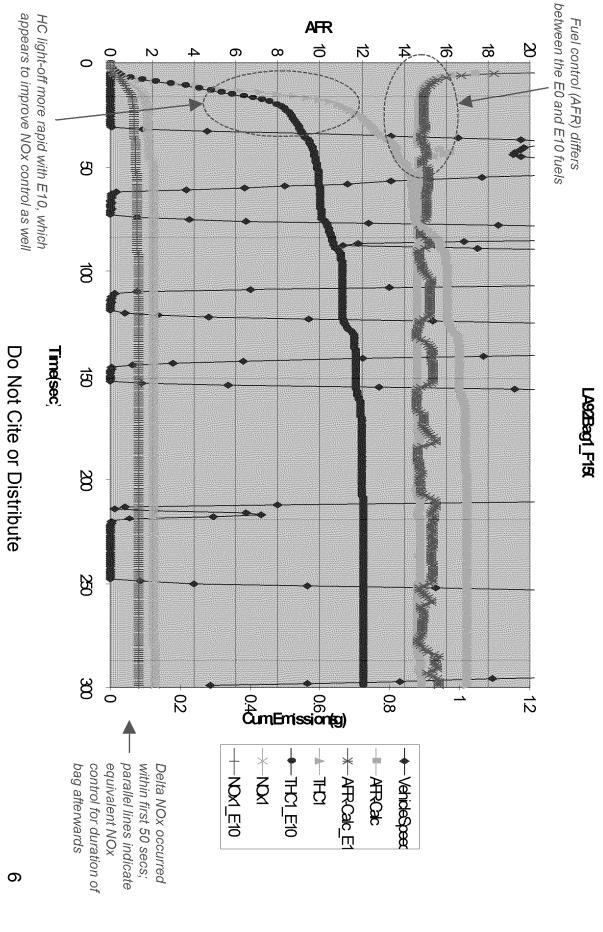
Test Results to Date

Preliminary Results for 75°F


- Decrease in cold start NOx for E10 and E15 compared to E0
- No statistically significant change in overall NOx emission for composite drive cycle
- Decrease in CO and HC emissions in composite drive cycle
- PM results are mixed, no clear trends
- Acetaldehyde and ethanol emissions increase with fuel ethanol level
- Findings are consistent with DOE's mid-level blends report

Do Not Cite or Distribute

Phase 1 Criteria Emission Impacts (Categorical Analysis via Mixed Model, p≤0.05 or p≤0.10)


			PM	CO2	NMHC	8	THC	NOX		
				<u> 1</u> .5	-13.3	-14.6	- <u>1</u> 1.1	-21.6	Bag 1	E10 \
THC	2		-17.3	-1.3					Bag 2	/s. E0 Relat
	Bag 1	E1:	30.4	-1.0	-38.1	-35.6	-27.8		Bag 3	E10 vs. E0 Relative Difference (%
	1 Bag 2	5 vs. E10 R		-1.3	-12.8	-13.8	-10.2		Comp	1Ce (%)
	2 Bag 3	E15 vs. E10 Relative Differençe (%	24.8	-0.8		-16.4		-18.3	Bag 1	E15 \
	Comp	erence (%)		-0.9					Bag 2	vs. E0 Rela
			59.4	-0.6	-35.4	-30.5			Bag 3	E15 vs. E0 Relative Differenc <u>e (%</u>
			*	-0.9	-14.5	-13.3	-9.8		Comp	nce (%)

Effects on Key Toxics

G

Example of modal and OBD data showing source of emissions changes between E0 and E10 fuels for one vehicle

Caveats to Phase 1 Results

- might look in an RFS2 world Phase 1 fuels were chosen to approximately represent how in-use ethanol blends
- Goal was to get a preview of ethanol impacts for RFS2 proposal
- However, multiple properties change between these fuels besides ethanol level
- Resulting dataset cannot be used to assign quantified emission effects to ethanol specifically without the rest of the data from Phase 3
- Meaningful fuel effects modeling cannot be done using resulting dataset alone

DDODEDTV	TIMIT	METHOD		FUEL	
FNOFENTI	Civi	IVIE I I I OD	E0	E10	E15
Ethanol Content	% .lov	D5599	<0.1	9.35	14.5
T50	Jo	D86	215	209	182
T90	Нo	D86	324	319	310
RVP	psi	D5191	9.17	9.05	8.91
Aromatics	% .lov	D1319	29.3	22.9	18.7
Olefins	% lov	D1319	6.4	5.7	5.6
Benzene	vol. %	D3606	0.48	0.49	0.46
S	mg/kg	D5453	23	23	21
RON	-	D2699	93.4	93.7	93.9
MON	-	D2700	83.5	84.9	84.6
(R + M)/2	-	Calc.	88.5	89.3	89.2

Budget Considerations Going Forward

- Current program cost estimates significantly exceed original projections
- Unrealistically low original cost estimates by SWRI
- Underestimation of base program cost : Ex. 4 CBI
- Base program cost estimate went up by **Ex. 4 CBI** between January 7, 2009 and February 5, 2009
- Unexpectedly high cost of "coming up to speed": Ex. 4 CBI
- Additional checkout tests to resolve HC analyzer saturation and secondary dilution ratio issues in Phase 2: **Ex. 4 CBI**
- Higher than originally estimated test replication rate: Ex. 4 CBI
- Fuel cost increase (modified fuel development protocol): Ex. 4 CBI
- Additional tasks
- EFM resolution: Ex. 4 CBI
- Fuel matrix redesign: Ex. 4 CBI
- FTP testing: Ex. 4 CBI
- Current shortfall: Ex. 4 CBI

545OneDrive2_00019428

Delay testing of CRC fuels: \$195,000 **Options to Reduce Cost**

Reduce the number of test fuels

- Reduction of the number of fuels by 1 would drop the G-efficiency of emission models below the minimum acceptable limit of 50%
- Coverage drops, fuel effects become confounded very fast

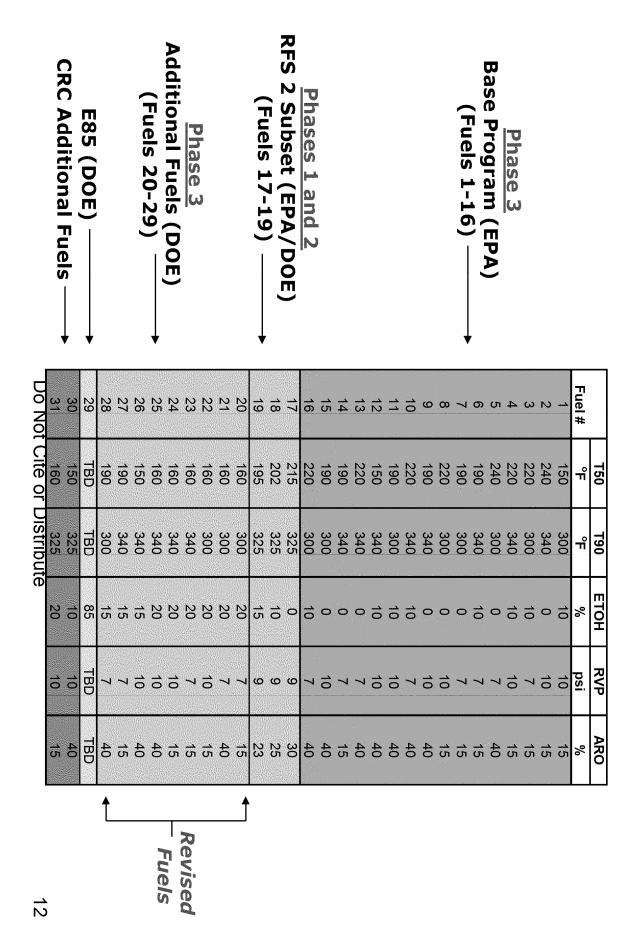
Reduce the number test vehicles

- getting a non-significant result in emission models. The power of the statistical test of 0.80 is the lowest acceptable in std practice (0.95 was Reduction of the number of vehicles from 19 to 15 doubles the probability of used in AutoOil)
- Reducing the number of test replicates from 2 to 1 has an even stronger
- Eliminate continuous THC, NOx... measurements in raw exhaust
- Would make critical types of information unavailable
- Minimal savings

Reduce the scope of exhaust HC speciation

- Data necessary for AQ modeling and toxic emission factors
- Phase I and II data not adequate due to fuel blending problems
- Work with SWRI to reduce program cost
- Obtain additional EPA funds

 Request additional DOE support


 Request additional DOE support

EPAct Cost Estimator

Item	Cost	Comments
Cost of Phase 3 (lower limit) - EPA estimate		
Funds currently available from the EPA		
Additional funds from EPA		TBD
Funds "released" by DOE due to reduced scope of Phase 3		
Additional funds from DOE	•	TBD
Scaling back of the number of vehicles to 15	EX. 4 - CBI	
Scaling back of exhaust HC speciation by 50%		
Elimination of continuous THC, NOx measurements in raw exhaust		minimal
Total		
Additional funding needed to test 15 vehicles while scaling back HC speciation by 50%		

Back-up Slides

Revised EPAct Fuel Matrix

Projected Schedule Going Forward

- Launch of Phase 3 testing: Mid-February 2009
- Completion of Phase 3 testing: Early December 2009
- Reporting: December 2009 mid-March 2010

Pha 50F Pha Pha NRI ORRI ORRI Graf